Metabolically active eukaryotic communities in extremely acidic mine drainage.

نویسندگان

  • Brett J Baker
  • Michelle A Lutz
  • Scott C Dawson
  • Philip L Bond
  • Jillian F Banfield
چکیده

Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50 degrees C), metal-rich (up to 269 mM Fe(2+), 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name "Acidomyces richmondensis" for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes.

During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist A...

متن کامل

Eukaryotic life in biofilms formed in a uranium mine

The underground uranium mine Königstein (Saxony, Germany), currently in the process of remediation, represents an underground acid mine drainage (AMD) environment, that is, low pH conditions and high concentrations of heavy metals including uranium, in which eye-catching biofilm formations were observed. During active uranium mining from 1984 to 1990, technical leaching with sulphuric acid was ...

متن کامل

نقش زهاب اسیدی معدن در تشکیل کانی‌های زیست محیطی در معادن زغالسنگ کارمزد، البرز مرکزی، استان مازندران

Nowadays, acid mine drainage (AMD) is one of the most important problems in coal mine contamination. The Karmozd coal mines in Mazandaran Province are one of the largest and oldest coal extractions in Central Alborze Coal Basin. The samples of coals, host rocks, mine drainages and secondary surface minerals have been collected in summer season of 2005. On the basis of hydrogeochemistry studies ...

متن کامل

Passive Treatment of Acid-Mine Drainage

Introduction Acidic mine drainage (AMD; also called “acid rock drainage” or “acid drainage”) is an environmental pollutant that impairs water resources in mining regions throughout the world. Where such treatment is required legally, treatment must be efficient and continual. Treatment methods are commonly divided into either “active,” meaning reliance on the addition of alkaline chemicals to n...

متن کامل

Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the draina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 10  شماره 

صفحات  -

تاریخ انتشار 2004